Ce cours est destiné aux étudiants du parcours FMP-M1.

Programming CNC (Computer Numerical Control) machines with G-code involves creating instructions for automated machining operations. G-code, a language understood by CNC machines, specifies toolpaths, speeds, and feeds to shape raw materials into finished products.

Here's a breakdown of programming CNC machines with G-code:

Understanding G-code: G-code is a standardized language used to control CNC machines. It consists of commands represented by letters and numbers, specifying various machining operations and parameters.

Creating a CAD Model: Before programming, designers typically create a Computer-Aided Design (CAD) model of the desired part or component. This model serves as a reference for generating toolpaths.

Generating Toolpaths: Using CAM (Computer-Aided Manufacturing) software, engineers convert the CAD model into toolpaths. Toolpaths define the routes that cutting tools will follow to remove material and shape the workpiece.

Writing G-code: Once toolpaths are generated, the CAM software translates them into G-code. Programmers may need to manually edit the G-code to optimize toolpaths, adjust cutting parameters, or accommodate specific machine capabilities.

Setting Workpiece and Tool Parameters: Before executing the program, operators set up the CNC machine by installing the correct cutting tools, securing the workpiece, and inputting parameters such as tool offsets and workpiece dimensions into the machine's control panel.

Simulating and Verifying: To ensure the program operates as intended and prevents errors or collisions, operators may simulate the machining process using virtual machining software. This step helps identify potential issues before running the program on the actual machine.

Executing the Program: Once the setup is complete and the program is verified, operators load the G-code into the CNC machine's control unit. The machine executes the programmed instructions, cutting, drilling, milling, or performing other operations according to the specified toolpaths.

Monitoring and Adjusting: During machining, operators monitor the process to ensure everything runs smoothly. They may adjust cutting parameters, tool speeds, or feed rates as needed to optimize efficiency and quality.

Post-Processing: After machining is complete, operators may perform post-processing tasks such as deburring, cleaning, or inspecting the finished parts to ensure they meet quality standards.

Iterative Improvement: Programming CNC machines with G-code often involves an iterative process of refinement. Operators may analyze machining results, identify areas for improvement, and adjust the programming or machining parameters accordingly for future projects.

Overall, programming CNC machines with G-code requires a combination of technical expertise, attention to detail, and a thorough understanding of machining processes and tooling. It enables the precise and efficient production of complex parts and components across a wide range of industries.

 

L’objectif de ce module est de traiter les paramètres de l’usure, de la lubrification et les phénomènes régissant le frottement entre deux solides qui sont conditionnés par les facteurs suivants :

·         Mode de contact

·         Conditions cinématiques

·         Conditions dynamiques

·         Ambiance entre corps interposés

·         Nature du matériau et leurs propriétés

·         Etat de surface

Ce cours est présenté sous forme d’un document destiné à fournir à l’étudiant dans sa recherche tous les acquis dédiés dans son cursus et pour réaliser les objectifs tracés dans sa formation en tant que technologue.


Les procédés d’usinage sont extrêmement variés. Le terme « usinage » employé par abus de langage est consacré par l’usage pour tous les procédés qui suivent. Il est utilisé pour les procédés sans présence d’outil, mais avec intervention d’un milieu agressif.

On distingue assez souvent les procédés d’usinage mécaniques dits  traditionnels des procédés d’usinage  non traditionnels  (non-traditional machining processes) ; cette dernière appellation désigne des procédés qui sont apparus après 1945 en grande partie pour usiner des matériaux se prêtant difficilement aux techniques d’usinage classiques.

De nombreux matériaux naturels ont été façonnés par l’action de la chaleur, de la lumière, de l’eau, des solutions chimiques, de l’énergie électrique, du vent, de procédés abrasifs. Les procédés non-conventionnels utilisent le courant électrique, la lumière amplifiée, des gaz, des abrasifs libres, des solutions chimiques, ou même l’eau comme moyens d’usinage plutôt qu’un outil de coupe ou d’abrasion conventionnel. Parmi ces procédés nous distinguons :

  • Procédés à action mécanique :
  • Jet d’eau et jet d’eau abrasif,
  • Usinage ultrasonique.
  • Procédés électrochimiques :
  • Usinage électrochimique,
  • Ébavurage et rectification électrochimiques.
  • Procédés thermiques :
  • Électroérosion,
  • Laser, plasma.
  • Procédés chimiques.

Ce cours s’adresse aux étudiants en 1ère année master de la spécialité (FMP), pour les initier aux nouveaux procédés d’usinage, dits non traditionnels ou non conventionnels


Il s’agit de mettre à la disposition des étudiants en Fabrication Mécanique et Productique un cours pour compléter et consolider leurs connaissances pour les rendre capables à la fin de l’unité de reconnaître les différentes parties essentielles des machines-outils et d’apprendre à concevoir leurs éléments principaux.